Title

Effect of Precision Error on T-scores and the Diagnostic Classification of Bone Status

Document Type

Article

Publication Date

7-1-2007

Description

We quantified confidence intervals (CIs) for T-scores for the lumbar spine and hip and determined the practical effect (impact on diagnosis) of variability around the T-score cutpoint of -2.5. Using precision data from the literature for GE Lunar Prodigy dual-energy X-ray absorptiometry (DXA) systems, the 95% CI for the T-score was ±0.23 at the lumbar spine (L1-L4), ± 0.20 at the total hip, and ±0.41 at the femoral neck. Thus, T-score variations of ±0.23 or less at the spine, ±0.20 at the total hip, and ±0.41 at the femoral neck are not statistically significant. When diagnosing osteoporosis, T-scores in the interval -2.3 to -2.7 for spine or total hip (after rounding to conform to guidelines from the International Society for Clinical Densitometry) and -2.1 to -2.9 for femoral neck are not statistically different from -2.5. Better precision values resulted in smaller 95% CIs. This concept was applied to actual clinical data using Hologic DXA systems. The study cohort comprised 2388 white women with either normal or osteopenic spines in whom the densitometric diagnosis of osteoporosis would be determined by hip T-scores. When evaluating actual patient T-scores in the range -2.5 ± 95% CI, we found that the diagnosis was indeterminate in approximately 12% of women when T-scores for femoral neck were used and in 4% of women when T-scores for total hip were used, with uncertainty as to whether the classification was osteopenia or osteoporosis. We conclude that precision influences the variability around T-scores and that this variability affects the reliability of diagnostic classification.

COinS