Early Catalytic Steps of Euglena Gracilis Chloroplast Type II Fatty Acid Synthase
Document Type
Article
Publication Date
9-29-1993
Description
Euglena gracilis is a very ancient eukaryote whose chloroplast acquisition and evolution has been independent of higher plants. The organism is unique in possessing two de novo fatty acid synthases, a true multienzyme complex of great size in the cytosol and a plastid-localized type II fatty acid synthase composed of discrete enzymes and acyl carrier protein (ACP). The enzymology of the early steps of fatty acid biosynthesis differed in the Euglena type II fatty acid synthase compared to those of Escherichia coli and plants. The enzymes of Euglena participating in both priming and elongation reactions to form a new carbon-carbon bond were acetyl-CoA-ACP transacylase, malonyl-CoA-ACP transacylase, and β-ketoacyl-ACP synthase I. The effects of inhibitors on the three different enzymes were noted. All carbon-carbon bond formation was inhibited by cerulenin. Although neither fatty acid biosynthesis nor any of the isolated enzymes were sensitive to diisopropylphosphofluoridate, the three Euglena enzymes studied were sensitive to different sulfhydryl-alkylating agents. Acetyl-ACP supported fatty acid biosynthesis as effectively as did comparable amounts of ACPSH and acetyl-CoA. There was no evidence for a β-ketoacyl-ACP synthase III for priming such as has been reported in type II fatty acid synthase of higher plants and bacteria. The roles of the acetyl-CoA-ACP transacylase and β-ketoacyl-ACP synthase I appear to be unique in the type II fatty acid synthase of Euglena. Acetyl-CoA-ACP transacylase, malonyl-CoA-ACP transacylase, and β-ketoacyl-ACP synthase I were separated from one another and shown to have different molecular weights.
Citation Information
Worsham, Lesa M.; Williams, Sande G.; and Ernst-Fonberg, Mary Lou. 1993. Early Catalytic Steps of Euglena Gracilis Chloroplast Type II Fatty Acid Synthase. Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism. Vol.1170(1). 62-71. https://doi.org/10.1016/0005-2760(93)90176-A PMID: 8399328 ISSN: 0005-2760