Honors Program

[Honors-in-Discipline (Choose below)]

Date of Award

8-2017

Thesis Professor(s)

Brian Bennett

Thesis Professor Department

Computing

Thesis Reader(s)

Matthew Harrison

Abstract

Immersion is essential for player experience in video games. Artificial Intelligence serves as an agent that can generate human-like responses and intelligence to reinforce a player’s immersion into their environment. The most common strategy involved in video game AI is using decision trees to guide chosen actions. However, decision trees result in repetitive and robotic actions that reflect an unrealistic interaction. This experiment applies a genetic algorithm that explores selection, crossover, and mutation functions for genetic algorithm implementation in an isolated Super Mario Bros. pathfinding environment. An optimized pathfinding AI can be created by combining an elitist selection strategy with a uniform distribution crossover and minimal mutation rate.

Publisher

East Tennessee State University

Document Type

Honors Thesis - Open Access

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

Copyright

Copyright by the authors.

Share

COinS