Honors Program

Fine and Performing Arts Honors

Date of Award

12-2021

Thesis Professor(s)

Lev Yampolsky

Thesis Professor Department

Biological Sciences

Thesis Reader(s)

Tom Laughlin

Abstract

Early exposure to hypoxia is related to a variety of physiological and metabolic changes that have lasting effects on organisms’ physiology and life history. We measured the effects of maternal and embryonic mild, intermittent hypoxia on the life history of four clones of microcrustacean Daphnia magna, an emerging model organism for the studies of senescence and longevity. Daphnia individuals were produced parthenogenically, maintained in individual vials, and fed standard algal concentration daily. The cohort consisted of 189 individuals. We measured body size at first reproduction, fecundity (including late-life fecundity peak), offspring sex ratio, and longevity. We found no effect of maternal and embryonic hypoxia on body size and longevity; however, there was a slight but statistically significant increase in age-specific mortality in the early hypoxia treatment cohort. Daphnia from the hypoxia group showed higher early fecundity which disappeared by the age of 100 days. A late-life spike in fecundity was observed at the age of 100 days when hypoxia group individuals showed significantly lower fecundity. There was little evidence of a trade-off between early- and late-life fecundity. Finally, early hypoxia affected mid-life male production in one of the four clones, and we discuss possible physiological changes triggered by maternal and embryonic exposure to hypoxia.

Publisher

East Tennessee State University

Document Type

Honors Thesis - Open Access

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

Copyright

Copyright by the authors.

Share

COinS