Honors Program
University Honors
Date of Award
5-2021
Thesis Professor(s)
Robert A. Beeler
Thesis Professor Department
Mathematics and Statistics
Thesis Reader(s)
Rodney Keaton
Abstract
Peg solitaire is a game in which pegs are placed in every hole but one and the player jumps over pegs along rows or columns to remove them. Usually, the goal of the player is to leave only one peg. In a 2011 paper, this game is generalized to graphs. In this thesis, we consider a variation of peg solitaire on graphs in which pegs can be removed either by jumping them or merging them together. To motivate this, we survey some of the previous papers in the literature. We then determine the solvability of several classes of graphs including stars and double stars, caterpillars, trees of small diameter, particularly four and five, and articulated caterpillars. We conclude this thesis with several open problems related to this study.
Publisher
East Tennessee State University
Document Type
Honors Thesis - Withheld
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Recommended Citation
McKinney, Amanda L., "Peg Solitaire on Graphs In Which We Allow Merging and Jumping" (2021). Undergraduate Honors Theses. Paper 629. https://dc.etsu.edu/honors/629
Copyright
Copyright by the authors.