Honors Program

Honors in Health Sciences: Microbiology

Date of Award

5-2020

Thesis Professor(s)

Sean Fox

Thesis Professor Department

Health Sciences

Thesis Reader(s)

Patrick Brown, Brad DeWeese

Abstract

Due to the increasing prevalence of multi-drug resistant (MDR) bacteria, it is now important to begin the search for novel means of defending against such resistant infections. Enterobacteriaceae is a clinically relevant family of bacteria that has shown extensive resistance to many antibiotics, especially after biofilm formation. Inhibitory poly-microbial interactions within this family have been observed. It is known that Citrobacter freundii (CF) growth is significantly inhibited by Klebsiella pneumoniae (KP) through a secreted protein. In this study, the potential KP bacteriocin was screened for its inhibitory effects on CF at various phases of biofilm development. The suspected KP bacteriocin was also tested for its ability to decrease the dosage of antibiotics necessary to inhibit CF growth. Using spectrophotometric analysis, it was shown that the combined treatment of streptomycin and the KP protein allowed a decrease in the minimum inhibitory concentration of streptomycin needed from 50 μM to 32 μM. The combined treatment also yielded increased inhibition at the initial attachment phase of CF infection, as well as after biofilm development. The study uses the secreted KP protein to show the use of poly-microbial interactions within clinical applications. Future projects concerning this KP molecule can pursue the use of a C. elegans model to determine its efficacy in vitro.

Publisher

East Tennessee State University

Document Type

Honors Thesis - Open Access

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

Copyright

Copyright by the authors.

Included in

Bacteriology Commons

Share

COinS