Restrained Domination in Self-Complementary Graphs
Document Type
Article
Publication Date
5-1-2021
Description
A self-complementary graph is a graph isomorphic to its complement. A set S of vertices in a graph G is a restrained dominating set if every vertex in V(G) \ S is adjacent to a vertex in S and to a vertex in V(G) \ S. The restrained domination number of a graph G is the minimum cardinality of a restrained dominating set of G. In this paper, we study restrained domination in self-complementary graphs. In particular, we characterize the self-complementary graphs having equal domination and restrained domination numbers.
Citation Information
Desormeaux, Wyatt J.; Haynes, Teresa W.; and Henning, Michael A.. 2021. Restrained Domination in Self-Complementary Graphs. Discussiones Mathematicae - Graph Theory. Vol.41(2). 633-645. https://doi.org/10.7151/dmgt.2222 ISSN: 1234-3099