Title

Bnip3 Mediates Doxorubicin-Induced Cardiomyocyte Pyroptosis via Caspase-3/GSDME

Document Type

Article

Publication Date

2-1-2020

Description

Aims: This study was aimed to investigate the role of GSDME-mediated pyroptosis in cardiac injury induced by Doxorubicin (DOX), and to evaluate the role of BH3-only protein Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (Bnip3) in regulation of DOX-induced pyroptosis. Main methods: HL-1 cardiomyocytes and C57BL/6J mice were treated by DOX to establish DOX-induced cardiotoxicity in vitro and in vivo models, respectively. Cell transfection was applied to regulate the expression of caspase-3, GSDME and Bnip3. Western blot was used for measuring expression of protein level. LDH-cytotoxicity assay was used to detect the LDH release. The Flow cytometry analysis was used to detect the cell death. Echocardiography was used to determine the cardiac function. HE staining was used for observing pathological feature of heart tissues. Key findings: Our results showed that GSDME-mediated pyroptosis was involved in DOX-induced cardiotoxicity in vivo. We showed that HL-1 cardiomyocytes exposed to DOX exhibited morphological features of pyroptosis in vitro. We also showed that DOX induced activation of caspase-3 and eventually triggered GSDME-dependent pyroptosis, which was reduced by the silence or inhibitor of caspase-3. We further showed that knockdown of GSDME inhibited DOX-induced cardiomyocyte pyroptosis in vitro. Finally, DOX increased the expression of Bnip3, whereas silencing of Bnip3 blunted cardiomyocyte pyroptosis induced by DOX, which was regulated through caspase-3 activation and GSDME cleavage. Significance: Our findings revealed a novel pathway that cardiomyocyte pyroptosis is regulated through Bnip3-caspase-3-GSDME pathway following DOX treatment, suggesting that Bnip3-dependent pyroptosis may offer a novel therapeutic strategy to reduce cardiotoxicity induced by DOX.

Share

COinS