Document Type
Article
Publication Date
11-7-2017
Description
Interferon (IFN) regulatory factors (IRFs) have crucial roles in immune regulation and oncogenesis. We have recently shown that IRF4 is activated through c-Src-mediated tyrosine phosphorylation in virus-transformed cells. However, the intracellular signaling pathway triggering Src activation of IRF4 remains unknown. In this study, we provide evidence that Epstein–Barr virus (EBV) latent membrane protein 1 (LMP1) promotes IRF4 phosphorylation and markedly stimulates IRF4 transcriptional activity, and that Src mediates LMP1 activation of IRF4. As to more precise mechanism, we show that LMP1 physically interacts with c-Src, and the phosphatidylinositol 3 kinase (PI3K) subunit P85 mediates their interaction. Depletion of P85 by P85-specific short hairpin RNAs disrupts their interaction and diminishes IRF4 phosphorylation in EBV-transformed cells. Furthermore, we show that Src is upstream of PI3K for activation of both IRF4 and Akt. In turn, inhibition of PI3K kinase activity by the PI3K-speicfic inhibitor LY294002 impairs Src activity. Our results show that LMP1 signaling is responsible for IRF4 activation, and further characterize the IRF4 regulatory network that is a promising therapeutic target for specific hematological malignancies.
Citation Information
Wang, Ling; Ren, Junping; Li, Guang; Moorman, Jonathan P.; Yao, Zhi Q.; and Ning, Shunbin. 2017. LMP1 Signaling Pathway Activates IRF4 in Latent EBV Infection and a Positive Circuit Between PI3K and Src Is Required. Oncogene. Vol.36(16). 2265-2274. https://doi.org/10.1038/onc.2016.380 ISSN: 0950-9232
Copyright Statement
This document is an author manuscript from PMC. The publisher's final edited version of this article is available at Oncogene.