Document Type
Conference Proceeding
Publication Date
6-18-2006
Description
For many business segments, true “out of the box” innovation occurs in entrepreneurial companies where the founders aren’t hindered with the research paradigms established by mainstream businesses. The founders of these companies, many times technologists and scientists, see the application of the technology long before potential customers develop an understanding of the capabilities that the new technology can bring to the marketplace. Many times these “new technology ideas” have been developed though modifying an existing dominant design (product or service) to meet an unforeseen market need or through the development of a new design that may become the new industry standard. The competitors of tomorrow may reside in radically different markets yet have the insight to envision the application or modification of an existing technology to a market segment that they are currently not involved in.
Teaching engineering technology students techniques and visioning tactics related to the innovation process has been difficult. Several of the authors have experienced, both in the classroom and in industrial settings, that many engineering and engineering technology students see innovation as the application of engineering principals resulting in small incremental changes in a process. Although these changes may result in a more efficient process through increased productivity, reduced waste, faster cycle times, etcetera; continuous improvement projects many times do not generate the dramatic market changes seen with a new dominant design. In fact in many established industries, disruptive innovation is discouraged in favor of continuous innovation because of the uncertainty of the risk/reward quotient and the impact that failed experimentation (increased research and development costs) can have on Wall Street’s perception of a company. Our university recently merged the colleges of Business and Technology and Applied Sciences resulting in a cross-pollinated faculty and the establishment of courses in the graduate and undergraduate curriculum where business and engineering technology student’s work together on class projects, many of which involve an innovation component.
It is interesting that many of the faculty who incorporate a discussion or exercise related to the innovation process in their classroom have had extensive experience in an industrial setting prior to joining the university faculty. Industry seasoned faculty bring their “real-world” experience to the classroom and challenge students to move beyond continuous improvement projects. In several cases, ideas generated in the classroom or through collaborative efforts between the business and technology faculty have resulted in prototypes being built in the laboratory for further testing of the prospective innovation.
The presence of a technology-centered business incubator located within walking distance from campus provides students the opportunity to observe several high technology businesses that have developed new technology niches in established market segments. These businesses provide consulting opportunities for cross-disciplinary graduate student teams to observe the challenges of introducing a new technology to address previously met market needs through introduction of a superior product. The business incubator is further linked to a sister technology-centered business incubator in Europe providing students (graduate and undergraduate) the opportunity to evaluate if a new technology should be launched initially in the United States or Europe. The creation of these learning opportunities mimic the industrial setting where graduates will be required to operate in cross-disciplinary teams that may address global manufacturing and marketing decisions.
This paper discusses the pedagogical approaches several faculty members have developed to introduce and cultivate a creative innovation process to undergraduate and graduate students enrolled in technology engineering and business marketing and management classes. These approaches include identifying unmet market niche opportunities, identifying technologies utilized in alternative markets that could be utilized for different market segments, classroom exercises to compel students to search existing patent literature, ideation and brainstorming exercises and researching business entities to identify their technology strategy and implementation plans.
Location
Chicago, IL
Citation Information
Clark, W. Andrew; Sims, J. Paul; Turner, Craig A.; and Smith, Jon L.. 2006. Embedding Innovation Process And Methodology In Engineering Technology And Business Management And Marketing Courses. Proceedings of the 2006 American Society for Engineering Education Annual Conference & Exposition, Chicago, IL. 11.530.1-11.530.16. https://peer.asee.org/embedding-innovation-process-and-methodology-in-engineering-technology-and-business-management-and-marketing-courses ISSN: 2153-5965
Included in
Entrepreneurial and Small Business Operations Commons, Scholarship of Teaching and Learning Commons
Copyright Statement
© 2006 American Society for Engineering Education. This document was originally published by the American Society for Engineering Education.