"Strong Equality of Upper Domination and Independence in Trees" by Teresa W. Haynes, Michael A. Henning et al.
 

Strong Equality of Upper Domination and Independence in Trees

Document Type

Article

Publication Date

5-1-2001

Description

Let P1 and P2 be properties of vertex subsets of a graph G, and assume that every subset of V (G) with property P2 also has property P1. Let μ1(G) and μ2(G), respectively, denote the maximum cardinalities of sets with properties P1 and P2, respectively. Then μ1(G) ≥ μ2(G). If μ1(G) = μ2(G) and every μ1(G)-set is also a μ2(G)-set, then we say μ1(G) strongly equals μ2(G), written μ1(G) ≡ μ2(G). We provide a constructive characterization of the trees T such that Γ(T) ≡ β(T), where β(T) and Γ(T) are the independence and upper domination numbers of T, respectively.

This document is currently not available here.

Share

COinS