High-Velocity Cloud Complex C: Galactic Fuel or Galactic Waste?

Document Type

Article

Publication Date

12-1-2001

Description

We present HST Goddard High Resolution Spectrograph and Space Telescope Imaging Spectrograph observations of five quasi stellar objects that probe the prominent high-velocity cloud (HVC) Complex C, covering ∼10% of the northern sky. Based upon a single sight-line measurement (Mrk 290), a metallicity [S/H] = -1.05 ± 0.12 has been associated with Complex C by Wakker et al. When coupled with its inferred distance (5 ≲ d ≲ 30 kpc) and line-of-sight velocity (v ∼ -100 to -200 km s-1), Complex C appeared to represent the first direct evidence for infalling low-metallicity gas onto the Milky Way, which could provide the bulk of the fuel for star formation in the Galaxy. We have extended the abundance analysis of Complex C to encompass five sight lines. We detect S n absorption in three targets (Mrk 290, 817, and 279); the resulting [S II/H I] values range from -0.36 (Mrk 279) to -0.48 (Mrk 817) to -1.10 (Mrk 290). Our preliminary O I FUSE analysis of the Mrk 817 sight line also supports the conclusion that metallicities as high as 0.3 times solar are encountered within Complex C. These results complicate an interpretation of Complex C as infalling low-metallicity Galactic fuel. Ionization corrections for H II and S III cannot easily reconcile the higher apparent metallicities along the Mrk 817 and Mrk 279 sight lines with that seen toward Mrk 290, since Hα emission measures preclude the existence of sufficient H II. If gas along the other lines of sight has a similar pressure and temperature to that sampled toward Mrk 290, the predicted Hα emission measures would be ∼900 mR. It may be necessary to reclassify Complex C as mildly enriched Galactic waste from the Milky Way or processed gas torn from a disrupted neighboring dwarf, as opposed to low-metallicity Galactic fuel.

Share

COinS