Protein Disulfide Isomerase, a Component of the Estrogen Receptor Complex, Is Associated With Chlamydia trachomatis Serovar E Attached to Human Endometrial Epithelial Cells

Document Type

Article

Publication Date

7-2-2002

Description

Chlamydia trachomatis serovar E, the leading bacterial agent responsible for sexually transmitted diseases, is required to invade genital epithelial cells for its growth and survival, yet little is known about the adhesin-receptor interactions promoting its entry. In contrast, much has been published on the heparan sulfate receptor for binding C. trachomatis L2 elementary bodies (EBs) prior to entry into HeLa cells. Using a different experimental approach in which a biotinylated apical membrane protein receptor(s) attached to EB at 4°C was stripped off the surface of polarized HEC-1B cells and immunoprecipitated with polyclonal anti-EB antibodies, an ∼55-kDa protein was reproducibly detected by enhanced chemiluminescence and two-dimensional gel electrophoresis. Matrix-assisted laser desorption ionization mass-spectrometry sequence analysis revealed the 55-kDa protein to be protein disulfide isomerase (PDI), a member of the estrogen receptor complex which carries out thiol-disulfide exchange reactions at infected host cell surfaces. Exposure of HEC-1B cells during EB attachment (1.5 to 2 h) to three different inhibitors of PDI reductive reactions-(i) the thiol-alkylating reagent DTNB (5,5′-dithiobis[2-nitrobenzoic acid]), (ii) bacitracin, and (iii) anti-PDI antibodies-resulted in reduced chlamydial infectivity. Since (i) C. trachomatis serovar E attachment to estrogen-dominant primary human endometrial epithelial cells is dramatically enhanced and (ii) productive entry into and infectivity of EB in host cells is dependent on reduction of EB cross-linked outer membrane proteins at the host cell surface, these data provide some preliminary evidence for an intriguing new potential receptor candidate for further analysis of luminal C. trachomatis serovar E entry.

Share

COinS