Osteopontin Modulates Myocardial Hypertrophy in Response to Chronic Pressure Overload in Mice

Document Type

Article

Publication Date

12-1-2004

Description

Osteopontin (OPN) expression increases in the heart during hypertrophy and heart failure. Here, we studied the role of OPN in pressure overload-induced hypertrophy and analyzed the signaling pathways involved in hypertrophy. Aortic banding (AB) was performed in a group of wild-type (WT) and OPN knockout (KO) mice to induce pressure overload. Left ventricular (LV) structural and functional remodeling was studied 1 month after AB. AB increased OPN and β1 integrin (a receptor for OPN) protein expression in WT-AB group. Hypertrophic response as measured by increased heart weight-to-body weight ratio and myocyte cross-sectional area was significantly increased in WT-AB and KO-AB groups when compared with their respective shams. However, the increase was significantly higher in WT-AB. Re-expression of atrial natriuretic factor was only detected in WT-AB group. LV end-diastolic pressure-volume curve obtained using Langendorff perfusion analysis exhibited a leftward shift in WT-AB group, not in KO-AB. LV-developed pressures measured over a range of LV volumes were significantly increased in WT-AB, not in KO-AB mice. Increased phosphorylation of c-Jun N-terminal kinases, p38 kinase, Akt, and glycogen synthase kinase-3β was significantly higher in WT-AB when compared with KO-AB group. Increased OPN expression may play an essential role in modulating compensatory cardiac hypertrophy in response to chronic pressure overload.

Share

COinS