Document Type
Article
Publication Date
2-18-2005
Description
Ca2+ regulates a spectrum of cellular processes including many aspects of neuronal function. Ca2+-sensitive events such as neurite extension and axonal guidance are driven by Ca2+ signals that are precisely organized in both time and space. These complex cues result from both Ca2+ influx across the plasma membrane and the mobilization of intracellular Ca2+ stores. In the present study, using rat cortical neurons, we have examined the effects of the novel intracellular Ca 2+-mobilizing messenger nicotinic acid adenine dinucleotide phosphate (NAADP) on neurite length and cytosolic Ca2+ levels. We show that NAADP potentiates neurite extension in response to serum and nerve growth factor and stimulates increases in cytosolic Ca2+ from bafilomycin- sensitive Ca2+ stores. Simultaneous blockade of inositol trisphosphate and ryanodine receptors abolished the effects of NAADP on neurite length and reduced the magnitude of NAADP-mediated Ca2+ signals. This is the first report demonstrating functional NAADP receptors in a mammalian neuron. Interplay between NAADP receptors and more established intracellular Ca2+ channels may therefore play important signaling roles in the nervous system.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Citation Information
Brailoiu, Eugen; Hoard, Jennifer L.; Filipeanu, Catalin M.; Brailoiu, G. Cristina; Dun, Siok L.; Patel, Sandip; and Dun, Nae J.. 2005. Nicotinic Acid Adenine Dinucleotide Phosphate Potentiates Neurite Outgrowth. Journal of Biological Chemistry. Vol.280(7). 5646-5650. https://doi.org/10.1074/jbc.M408746200 PMID: 15528210 ISSN: 0021-9258
Copyright Statement
© 2005 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
Creative Commons Attribution (CC BY 4.0)