Sequential Expression of NKCC2, TonEBP, Aldose Reductase, and Urea Transporter-A in Developing Mouse Kidney

Document Type

Article

Publication Date

1-1-2007

Description

This study was conducted to test the hypothesis that, during renal development, the Na-K-2Cl cotransporter type 2 (NKCC2) activates the tonicity-responsive enhancer binding protein (TonEBP) transcription factor by creating medullary hypertonicity. TonEBP, in turn, drives the expression of aldose reductase (AR) and urea transporter-A (UT-A). Kidneys from 13- to19-day-old fetuses (F13-F19), 1- to 21-day-old pups (P1-P21), and adult mice were examined by immunohistochemistry. NKCC2 was first detected on F14 in differentiating macula densa and thick ascending limb (TAL). TonEBP was first detected on F15 in the medullary collecting duct (MCD) and surrounding endothelial cells. AR was detected in the MCD cells of the renal medulla from F15. UT-A first appeared in the descending thin limb (DTL) on F16 and in the MCD on F18. After birth, NKCC2-positive TALs disappeared gradually from the tip of the renal papilla, becoming completely undetectable in the inner medulla on P21. TonEBP shifted from the cytoplasm to the nucleus in both vascular endothelial cells and MCD cells on P1, and its abundance increased gradually afterward. Immunoreactivity for AR and UT-A in the renal medulla increased markedly after birth. Treatment of neonatal animals with furosemide dramatically reduced expression of TonEBP, AR, and UT-A1. Furosemide also prevented the disappearance of NKCC2-expressing TALs in the papilla. The sequential expression of NKCC2, TonEBP, and its targets AR and UT-A and the reduced expression TonEBP and its targets in response to furosemide treatment support the hypothesis that local hypertonicity produced by the activity of NKCC2 activates TonEBP during development.

Share

COinS