Modeling Tardive Dyskinesia: Predictive 5-HT2c Receptor Antagonist Treatment

Document Type

Article

Publication Date

3-1-2007

Description

Tardive dyskinesia (TD), a movement disorder produced by long-term treatment with a classical antipsychotic drug, is generally considered to be a disorder of dopamine (DA) systems, since classical antipsychotics are potent DA D2 receptor blockers. Also, acute DA D1 agonist treatment of rats is known to produce vacuous chewing movements (VCMs), a behavioral feature resembling the oral dyskinesia that is so prominent in most instances of TD. In this paper we outline a series of studies in a new animal model of TD in which DA D1 receptor supersensitivity was produced by neonatal 6-hydroxydopamine (6-OHDA)-induced destruction of nigrostriatal DA fibers. In rats so-lesioned 5-HT receptor supersensitivity is additionally produced, and in fact 5-HT receptor antagonists attenuate enhanced DA D16-lesioned rats treated with haloperidol for one year, there is a 2-fold increase in numbers of VCMs (versus intact rats treated with haloperidol); and this high frequency of VCMs persists for more than 6 months after discontinuing haloperidol treatment. During this stage, 5-HT2 receptor antagonists, but not DA D1 receptor antagonists, attenuate the incidence of VCMs. This series of findings implicates the 5-HT neuronal phenotype in TD, and promotes 5-HT2 receptor antagonists, more specifically 5-HT2C receptor antagonists, as a rational treatment approach for TD in humans.

Share

COinS