The Search for the Salicylic Acid Receptor LED to Discovery of the SAR Signal Receptor
Document Type
Article
Publication Date
1-1-2008
Description
Systemic acquired resistance (SAR) is a state of heightened defense which is induced throughout a plant by an initial infection; it provides long-lasting, broad-spectrum resistance to subsequent pathogen challenge. Recendy we identified a phloem-mobile signal for SAR which has been elusive for almost 30 years. It is methyl salicylate (MeSA), an inactive derivative of the defense hormone, salicylic acid (SA). This discovery resulted from extensive characterization of SA-binding protein 2 (SABP2), a protein whose high affinity for SA and extremely low abundance suggested that it might be the SA receptor. Instead we discovered that SABP2 is a MeSA esterase whose function is to convert biologically inactive MeSA in the systemic tissue to active SA. The accumulated SA then activates or primes defenses leading to SAR. SABP2's esterase activity is inhibited in the initially/primary infected tissue by SA binding in its active site; this facilitates accumulation of MeSA, which is then translocated through the phloem to systemic tissue for perception and processing by SABP2 to SA. Thus, while SABP2 is not the SA receptor, it can be considered the receptor for the SAR signal. This study of SABPs not only illustrates the unexpected nature of scientific discoveries, but also underscores the need to use biochemical approaches in addition to genetics to address complex biological processes, such as disease resistance.
Citation Information
Kumar, Dhirendra; and Klessig, Daniel F.. 2008. The Search for the Salicylic Acid Receptor LED to Discovery of the SAR Signal Receptor. Plant Signaling and Behavior. Vol.3(9). 691-692. https://doi.org/10.4161/psb.3.9.5844 ISSN: 1559-2316