Title

Pharmacological Models of ADHD

Document Type

Review

Publication Date

2-1-2008

Description

For more than 50 years, heavy metal exposure during pre- or post-natal ontogeny has been known to produce long-lived hyperactivity in rodents. Global brain injury produced by neonatal hypoxia also produced hyperactivity, as did (mainly) hippocampal injury produced by ontogenetic exposure to X-rays, and (mainly) cerebellar injury produced by the ontogenetic treatments with the antimitotic agent methylazoxymethanol or with polychlorinated biphenyls (PCBs). More recently, ontogenetic exposure to nicotine has been implicated in childhood hyperactivity. Because attention deficits most often accompany the hyperactivity, all of the above treatments have been used as models of attention deficit hyperactivity disorder (ADHD). However, the causation of childhood hyperactivity remains unknown. Neonatal 6-OHDA-induced dopaminergic denervation of rodent forebrain also produces hyperactivity - and this model, or variations of it, remain the most widely-used animal model of ADHD. In all models, amphetamine (AMPH) and methylphenidate (MPH), standard treatments of childhood ADHD, typically attenuate the hyperactivity and/or attention deficit. On the basis of genetic models and the noted animal models, monoaminergic phenotypes appear to most-closely attend the behavioral dysfunctions, notably dopaminergic, noradrenergic and serotoninergic systems in forebrain (basal ganglia, nucleus accumbens, prefrontal cortex). This paper describes the various pharmacological models of ADHD and attempts to ascribe a neuronal phenotype with specific brain regions that may be associated with ADHD.

COinS