Title

An Upregulation of DNA-Methyltransferase 1 and 3a Expressed in Telencephalic Gabaergic Neurons of Schizophrenia Patients Is Also Detected in Peripheral Blood Lymphocytes

Document Type

Article

Publication Date

6-1-2009

Description

Several lines of schizophrenia (SZ) research suggest that a functional downregulation of the prefrontal cortex GABAergic neuronal system is mediated by a promoter hypermethylation, presumably catalyzed by an increase in DNA-methyltransferase-1 (DNMT-1) expression. This promoter hypermethylation may be mediated not only by DNMT-1 but also by an entire family of de novo DNA-methyltransferases, such as DNA-methyltransferase-3a (DNMT-3a) and -3b (DNMT-3b). To verify the existence of an overexpression of DNMT-3a and DNMT-3b in the brain of schizophrenia patients (SZP), we compared their mRNA expression in Brodmann's area 10 (BA10) and in the caudate nucleus and putamen obtained from the Harvard Brain Tissue Resource Center (Belmont, MA) from both nonpsychiatric subjects (NPS) and SZP. Our results demonstrate that DNMT-3a and DNMT-1 are expressed and co-localize in distinct GABAergic neuron populations whereas DNMT-3b mRNA is virtually undetectable. We also found that unlike DNMT-1, which is frequently overexpressed in telencephalic GABAergic neurons of SZP, DNMT-3a mRNA is overexpressed only in layer I and II GABAergic interneurons of BA10. To ascertain whether these DNMT expression differences observed in brain tissue could also be detected in peripheral tissues, we studied whether DNMT-1 and DNMT-3a mRNAs were overexpressed in peripheral blood lymphocytes (PBL) of SZP. Both DNMT-1 and DNMT-3a mRNAs are expressed in the PBL and although DNMT-3a mRNA levels in the PBL are approximately 1/10 of those of DNMT-1, the comparison of the PBL content in NPS and SZP showed a highly significant 2-fold increase of both DNMT-1 and DNMT-3a mRNA in SZP. These changes were unaffected by the dose, the duration, or the type of antipsychotic treatment. The upregulation of DNMT-1 and to a lesser extent that of DNMT-3a mRNA in PBL of SZP supports the concept that this readily available peripheral cell type can express an epigenetic variation of specific biomarkers relevant to SZ morbidity. Hence, PBL studies may become useful to investigate a diagnostic epigenetic marker of SZ morbidity.

COinS