Over-Expression of a Modified Bifunctional Apoptosis Regulator Protects Against Cardiac Injury and Doxorubicin-Induced Cardiotoxicity in Transgenic Mice
Document Type
Article
Publication Date
1-1-2009
Description
Aims: Bifunctional apoptosis regulator (BAR) is an endoplasmic reticulum protein that interacts with both the extrinsic and intrinsic apoptosis pathways. We hypothesize that over-expression of BARΔRING prevents apoptosis and injury following ischaemia/reperfusion (I/R) and attenuates doxorubicin (DOX)-induced cardiotoxicity. Methods and results: We generated a line of transgenic mice that carried a human BARΔRING transgene under the control of the mouse α-myosin heavy chain promoter. The RING domain, which binds ubiquitin conjugating enzymes, was deleted to prevent auto-ubiquitination of BAR and allow accumulation of the BAR protein, which binds apoptosis-regulating proteins. High levels of human BARΔRING transcripts and 42 KDa BARΔRING protein were expressed in the hearts of transgenic mice. When excised hearts were reperfused ex vivo for 45 min as Langendorff preparations after 45 min of global ischaemia, the functional recovery of the hearts, expressed as left ventricular developed pressure x heart rate, was 23 ± 1.7% in the non-transgenic hearts compared with 51.5 ± 4.3% in the transgenic hearts (P < 0.05). For in vivo studies, mice were subjected to 50 min of ligation of the left descending anterior coronary artery followed by 4 h of reperfusion. The infarct sizes following I/R injury, expressed as the percentage of the area at risk, were significantly smaller in the transgenic mice than in the non-transgenic mice (29 ± 4 vs. 55 ± 4%, P < 0.05). In hearts of mice subjected to cardiac I/R injury, BAR transgenic hearts had significantly fewer in situ oligo-ligation-positive cardiac cells (5.0 ± 0.4 vs. 13.4 ± 0.5%, P < 0.05). Over-expression of BARΔRING also significantly attenuated DOX-induced cardiac dysfunction and apoptosis. Conclusion: Our results demonstrate that over-expression of BARΔRING renders the heart more resistant to I/R injury and DOX-induced cardiotoxicity, and this protection correlates with reduced cardiomyocyte apoptosis.
Citation Information
Chua, Chu C.; Gao, Jinping; Ho, Ye S.; Xu, Xingshun; Kuo, I. C.; Chua, Kaw Y.; Wang, Hong; Hamdy, Ronald C.; Reed, John C.; and Chua, Balvin H.. 2009. Over-Expression of a Modified Bifunctional Apoptosis Regulator Protects Against Cardiac Injury and Doxorubicin-Induced Cardiotoxicity in Transgenic Mice. Cardiovascular Research. Vol.81(1). 20-27. https://doi.org/10.1093/cvr/cvn257 PMID: 18805781 ISSN: 0008-6363