Suppressing Flashes of Items Surrounding Targets During Calibration of a P300-Based Brain-Computer Interface Improves Performance

Document Type

Conference Proceeding

Publication Date



Since the introduction of the P300 brain-computer interface (BCI) speller by Farwell and Donchin in 1988, the speed and accuracy of the system has been significantly improved. Larger electrode montages and various signal processing techniques are responsible for most of the improvement in performance. New presentation paradigms have also led to improvements in bit rate and accuracy (e.g. Townsend et al (2010 Clin. Neurophysiol. 121 1109-20)). In particular, the checkerboard paradigm for online P300 BCI-based spelling performs well, has started to document what makes for a successful paradigm, and is a good platform for further experimentation. The current paper further examines the checkerboard paradigm by suppressing items which surround the target from flashing during calibration (i.e. the suppression condition). In the online feedback mode the standard checkerboard paradigm is used with a stepwise linear discriminant classifier derived from the suppression condition and one classifier derived from the standard checkerboard condition, counter-balanced. The results of this research demonstrate that using suppression during calibration produces significantly more character selections/min ((6.46) time between selections included) than the standard checkerboard condition (5.55), and significantly fewer target flashes are needed per selection in the SUP condition (5.28) as compared to the RCP condition (6.17). Moreover, accuracy in the SUP and RCP conditions remained equivalent (∼90%). Mean theoretical bit rate was 53.62 bits/min in the suppression condition and 46.36 bits/min in the standard checkerboard condition (ns). Waveform morphology also showed significant differences in amplitude and latency.