The Multifaceted Role of Oestrogen in Enhancing Chlamydia Trachomatis Infection in Polarized Human Endometrial Epithelial Cells

Document Type

Article

Publication Date

8-1-2011

Description

The oestrogen receptor (ER) α-β+ HEC-1B and the ERα+β+ Ishikawa (IK) cell lines were investigated to dissect the effects of oestrogen exposure on several parameters of Chlamydia trachomatis infection. Antibody blockage of ERα or ERβ alone or simultaneously significantly decreased C. trachomatis infectivity (45-68%). Addition of the ERβ antagonist, tamoxifen, to IK or HEC-1B prior to or after chlamydial infection caused a 30-90% decrease in infectivity, the latter due to disrupted eukaryotic organelles. In vivo, endometrial glandular epithelial cells are stimulated by hormonally influenced stromal signals. Accordingly, chlamydial infectivity was significantly increased by 27% and 21% in IK and HEC-1B cells co-cultured with SHT-290 stromal cells exposed to oestrogen. Endometrial stromal cell/epithelial cell co-culture revealed indirect effects of oestrogen on phosphorylation of extracellular signal-regulated kinase and calcium-dependant phospholipase A2 and significantly increased production of interleukin (IL)-8 and IL-6 in both uninfected and chlamydiae-infected epithelial cells. These results indicate that oestrogen and its receptors play multiple roles in chlamydial infection: (i) membrane oestrogen receptors (mERs) aid in chlamydial entry into host cells, and (ii) mER signalling may contribute to inclusion development during infection. Additionally, enhancement of chlamydial infection is affected by hormonally influenced stromal signals in conjunction with direct oestrogen stimulation of the human epithelia.

Share

COinS