Stereotypic Progressions in Psychotic Behavior

Document Type

Article

Publication Date

2-1-2011

Description

Dopamine receptor supersensitivity (DARSS) often is invoked as a mechanism possibly underlying disordered thought processes and agitation states in psychiatric disorders. This review is focused on identified means for producing DARSS and associating the role of other monoaminergic systems in modulating DARSS. Dopamine (DA) receptors, experimentally, are prone to become supersensitive and to thus elicit abnormal behaviors when coupled with DA or a receptor agonist. In intact (control) rats repeated DA D1 agonist treatments fail to sensitize D1 receptors, while repeated D 2 agonist treatments sensitize D2 receptors. D2 RSS is attenuated by a lesion with DSP-4 (N-(2-chlorethyl)-N-ethyl-2- bromobenzylamine) in early postnatal ontogeny, indicating that noradrenergic nerves have a permissive effect on D2 DARSS. However, if DSP-4 is co-administered with 5,7-dihydroxytryptamine to destroy serotonin (5-HT) nerves, then D2 RSS is restored. In rats treated early in postnatal ontogeny with the neurotoxin 6-hydroxydopamine to largely destroy DA innervation of striatum, both repeated D1 and D2 agonists sensitize D1 receptors. 5-HT nerves appear to have a permissive effect on D1 DARSS, as a 5-HT lesion reduces the otherwise enhanced effect of a D1 agonist. The series of findings demonstrate that DARSS is able to be produced by repeated agonist treatments, albeit under different circumstances. The involvement of other neuronal phenotypes as modulators of DARSS provides the potential for targeting a variety of sites in the aim to prevent or attenuate DARSS. This therapeutic potential broadens the realm of approaches toward treating psychiatric disorders.

Share

COinS