Differential DNA Damage Responses in p53 Proficient and Deficient Cells: Cisplatin-Induced Nuclear Import of XPA Is Independent of ATR Checkpoint in p53-Deficient Lung Cancer Cells
Document Type
Article
Publication Date
6-10-2011
Description
Nucleotide excision repair (NER) and ataxia telangiectasia mutated (ATM)/ATR (ATM- and RAD3-related) NA damage checkpoints are among the major pathways that affect the chemotherapeutic efficiency of the anticancer rug cisplatin. Xeroderma pigmentosum group A (XPA) protein plays a crucial role in NER including both global enome repair (GG-NER) and transcription-coupled repair (TC-NER) subpathways, and has been a potential target for mproving cisplatin therapeutic effects. We report here that XPA translocates from the cytosol into the nucleus after NA damage induced by UV irradiation and cisplatin, a mimetic of UV damage, in human cells with or without p53 deficiency. However, the damage-induced response of XPA nuclear import was significantly slower in p53-deficient cells than in p53-proficient cells. We also found that while XPA is imported into the nucleus upon cisplatin or UV damage in an ATR-dependent manner in p53-proficient A549 lung cancer cells, the ATR checkpoint pathway has no effect on the XPA nuclear import in p53-deficient H1299 lung cancer cells. Similarly, the XPA nuclear translocation is not regulated by ATM checkpoint or by p38MAPK/MK2 either. Our findings suggest that NER is independent on the major DNA damage checkpoint pathways in H1299 (p53-/-) cells and that DNA damage responses are mechanistically different between p53-proficient and p53-deficient cells. Our results also highlight the possibility of selectively targeting XPA nuclear import as a way to sensitize cisplatin anticancer activity, but targeting ATR/ATM-dependent checkpoints may not be helpful in killing p53-deficient cancer cells.
Citation Information
Li, Zhengke; Musich, Phillip R.; and Zou, Yue. 2011. Differential DNA Damage Responses in p53 Proficient and Deficient Cells: Cisplatin-Induced Nuclear Import of XPA Is Independent of ATR Checkpoint in p53-Deficient Lung Cancer Cells. International Journal of Biochemistry and Molecular Biology. Vol.2(2). 138-145. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3107498/