Document Type
Article
Publication Date
5-1-2012
Description
Nucleotide excision repair (NER) is a major repair pathway that recognizes and corrects various lesions in cellular DNA. We hypothesize that damage recognition is an initial step in NER that senses conformational anomalies in the DNA caused by lesions. We prepared three DNA duplexes containing the carcinogen adduct N-(2′-deoxyguanosin-8-yl)-7-fluoro-2-acetylaminofluorene (FAAF) at G1, G2 or G3 of NarI sequence (5′-CCG1G2CG3CC-3′). Our 19F-NMR/ICD results showed that FAAF at G1 and G3 prefer syn S-and W-conformers, whereas anti B-conformer was predominant for G2. We found that the repair of FAAF occurs in a conformation-specific manner, i.e. the highly S/W-conformeric G3 and-G1 duplexes incised more efficiently than the B-type G2 duplex (G3∼G1>G2). The melting and thermodynamic data indicate that the S-and W-conformers produce greater DNA distortion and thermodynamic destabilization. The N-deacetylated N-(2′-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene (FAF) adducts in the same NarI sequence are repaired 2-to 3-fold less than FAAF: however, the incision efficiency was in order of G2∼G1>G 3, a reverse trend of the FAAF case. We have envisioned the so-called N-acetyl factor as it could raise conformational barriers of FAAF versus FAF. The present results provide valuable conformational insight into the sequence-dependent UvrABC incisions of the bulky aminofluorene DNA adducts.
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.
Citation Information
Jain, Vipin; Hilton, Benjamin; Patnaik, Satyakam; Zou, Yue; Paul Chiarelli, M.; and Cho, Bongsup P.. 2012. Conformational and Thermodynamic Properties Modulate the Nucleotide Excision Repair of 2-Aminofluorene and 2-Acetylaminofluorene dG Adducts in the NarI Sequence. Nucleic Acids Research. Vol.40(9). 3939-3951. https://doi.org/10.1093/nar/gkr1307 PMID: 22241773 ISSN: 0305-1048
Copyright Statement
ß The Author(s) 2012. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.