Progress on the Murty–Simon Conjecture on Diameter-2 Critical Graphs: A Survey

Document Type

Article

Publication Date

10-1-2015

Description

A graph $$G$$G is diameter 2-critical if its diameter is two and the deletion of any edge increases the diameter. Murty and Simon conjectured that the number of edges in a diameter-2-critical graph G of order n is at most ⌊n2/4⌋ and that the extremal graphs are the complete bipartite graphs K⌊n/2⌋,⌈n/2⌉. We survey the progress made to date on this conjecture, concentrating mainly on recent results developed from associating the conjecture to an equivalent one involving total domination.

Share

COinS