Sphingosylphosphorylcholine Promotes the Differentiation of Resident Sca-1 Positive Cardiac Stem Cells to Cardiomyocytes Through Lipid raft/JNK/STAT3 and β-catenin Signaling Pathways
Document Type
Article
Publication Date
7-1-2016
Description
Resident cardiac Sca-1-positive (+) stem cells may differentiate into cardiomyocytes to improve the function of damaged hearts. However, little is known about the inducers and molecular mechanisms underlying the myogenic conversion of Sca-1+ stem cells. Here we report that sphingosylphosphorylcholine (SPC), a naturally occurring bioactive lipid, induces the myogenic conversion of Sca-1+ stem cells, as evidenced by the increased expression of cardiac transcription factors (Nkx2.5 and GATA4), structural proteins (cardiac Troponin T), transcriptional enhancer (Mef2c) and GATA4 nucleus translocation. First, SPC activated JNK and STAT3, and the JNK inhibitor SP600125 or STAT3 inhibitor stattic impaired the SPC-induced expression of cardiac transcription factors and GATA4 nucleus translocation, which suggests that JNK and STAT3 participated in SPC-promoted cardiac differentiation. Moreover, STAT3 activation was inhibited by SP600125, whereas JNK was inhibited by β-cyclodextrin as a lipid raft breaker, which indicates a lipid raft/JNK/STAT3 pathway involved in SPC-induced myogenic transition. β-Catenin, degraded by activated GSK3β, was inhibited by SPC. Furthermore, GSK3β inhibitors weakened but the β-catenin inhibitor promoted SPC-induced differentiation. We found no crosstalk between the lipid raft/JNK/STAT3 and β-catenin pathway. Our study describes a lipid, SPC, as an endogenic inducer of myogenic conversion in Sca-1+ stem cells with low toxicity and high efficiency for uptake.
Citation Information
Li, Wenjing; Liu, Honghong; Liu, Pingping; Yin, Deling; Zhang, Shangli; and Zhao, Jing. 2016. Sphingosylphosphorylcholine Promotes the Differentiation of Resident Sca-1 Positive Cardiac Stem Cells to Cardiomyocytes Through Lipid raft/JNK/STAT3 and β-catenin Signaling Pathways. Biochimica et Biophysica Acta - Molecular Cell Research. Vol.1863(7). 1579-1588. https://doi.org/10.1016/j.bbamcr.2016.04.006 PMID: 27066979 ISSN: 0167-4889