Document Type
Article
Publication Date
1-1-2016
Description
Cerebellar function is critical for coordinating movement and motor learning. However, events occurring in the cerebellum following spinal cord injury (SCI) have not been investigated in detail. We provide evidence of SCI-induced cerebellar synaptic changes involving a loss of granule cell parallel fiber input to distal regions of the Purkinje cell dendritic tree. This is accompanied by an apparent increase in synaptic contacts to Purkinje cell proximal dendrites, presumably from climbing fibers originating in the inferior olive. We also observed an early stage injury-induced decrease in the levels of cerebellin-1, a synaptic organizing molecule that is critical for establishing and maintaining parallel fiber-Purkinje cell synaptic integrity. Interestingly, this transsynaptic reorganizational pattern is consistent with that reported during development and in certain transgenic mouse models. To our knowledge, such a reorganizational event has not been described in response to SCI in adult rats. Regardless, the novel results of this study are important for understanding SCI-induced synaptic changes in the cerebellum, which may prove critical for strategies focusing on promoting functional recovery.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Citation Information
Visavadiya, Nishant P.; and Springer, Joe E.. 2016. Altered Cerebellar Circuitry following Thoracic Spinal Cord Injury in Adult Rats. Neural Plasticity. Vol.2016 https://doi.org/10.1155/2016/8181393 PMID: 27504204 ISSN: 2090-5904
Copyright Statement
Copyright © 2016 Nishant P. Visavadiya and Joe E. Springer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited