DNA Damage by the Sulfate Radical Anion: Hydrogen Abstraction From the Sugar Moiety Versus One-Electron Oxidation of Guanine

Document Type

Article

Publication Date

7-2-2016

Description

The products of oxidative damage to double-stranded (ds) DNA initiated by photolytically generated sulfate radical anions SO4•− were analyzed using reverse-phase (RP) high-performance liquid chromatography (HPLC). Relative efficiencies of two major pathways were compared: production of 8-oxoguanine (8oxoG) and hydrogen abstraction from the DNA 2-deoxyribose moiety (dR) at C1,′ C4,′ and C5′ positions. The formation of 8oxoG was found to account for 87% of all quantified lesions at low illumination doses. The concentration of 8oxoG quickly reaches a steady state at about one 8oxoG per 100 base pairs due to further oxidation of its products. It was found that another guanine oxidation product identified as 2-amino-5-(2′-alkylamino)-4H-imidazol-4-one (X) was released in significant quantities from its tentative precursor 2-amino-5-[(2′-deoxy-β-d-erythro-pentofuranosyl)amino]-4H-imidazol-4-one (dIz) upon treatment with primary amines in neutral solutions. The linear dose dependence of X release points to the formation of dIz directly from guanine and not through oxidation of 8oxoG. The damage to dR was found to account for about 13% of the total damage, with majority of lesions (33%) originating from the C4′ oxidation. The contribution of C1′ oxidation also turned out to be significant (17% of all dR damages) despite of the steric problems associated with the abstraction of the C1′-hydrogen. However, no evidence of base-to-sugar free valence transfer as a possible alternative to direct hydrogen abstraction at C1′ was found.

Share

COinS