[1, 2]-Sets in Graphs
Document Type
Article
Publication Date
12-1-2013
Description
A subset S⊆V in a graph G=(V,E) is a [j,k]-set if, for every vertex vεV\-S, j≤|N(v)\∩S|≤k for non-negative integers j and k, that is, every vertex vεV\-S is adjacent to at least j but not more than k vertices in S. In this paper, we focus on small j and k, and relate the concept of [j,k]-sets to a host of other concepts in domination theory, including perfect domination, efficient domination, nearly perfect sets, 2-packings, and k-dependent sets. We also determine bounds on the cardinality of minimum [1, 2]-sets, and investigate extremal graphs achieving these bounds. This study has implications for restrained domination as well. Using a result for [1, 3]-sets, we show that, for any grid graph G, the restrained domination number is equal to the domination number of G.
Citation Information
Chellali, Mustapha; Haynes, Teresa W.; Hedetniemi, Stephen T.; and McRae, Alice. 2013. [1, 2]-Sets in Graphs. Discrete Applied Mathematics. Vol.161(18). 2885-2893. https://doi.org/10.1016/j.dam.2013.06.012 ISSN: 0166-218X