Inhibition of LPS-induced NFκB Activation by a Glucan Ligand Involves Down-Regulation of IKKβ Kinase Activity and Altered Phosphorylation and Degradation of IκBα

Document Type

Article

Publication Date

1-1-2000

Description

Growing evidence supports the role of transcription factor activation in the pathophysiology of inflammatory disorders, sepsis, ARDS, SIRS, and shock. Kinase mediated phosphorylation of IκBα is a crucial step in the NFκB activation pathway. We investigated IκBα phosphorylation in murine liver and lung extracts after cecal ligation and puncture (CLP) in the presence and absence of a glucan ligand. ICR mice were subjected to CLP. Unoperated and sham-operated mice served as the controls. Glucan phosphate (50 mg/kg) was administered 1 h before or 15 min after CLP. CLP increased hepatic and pulmonary levels of phospho-IκBα by 48-192%. Pre-or post-treatment with glucan phosphate decreased (P < 0.05) tissue phospho-IκBα levels in CLP mice. Phospho-IκBα in the glucan-CLP group were not significantly different from the unoperated controls. To investigate mechanisms we examined IKKβ kinase activity, IκBα phosphorylation and degradation, and NFκB activity in a murine macrophage cell line, J774a.1, treated with LPS (1 μg/mL) and/or glucan phosphate (1 μg/mL) for up to 120 min. The glucan ligand blunted LPS-induced IKKβ kinase activity, phosphorylation and degradation of IκBα, and NFκB nuclear binding activity. The data indicate that one mechanism by which (1→3)-β-D-glucan may alter the response to endotoxin or polymicrobial sepsis involves modulation of IKKβ kinase activity with subsequent decreases in IκBα phosphorylation and NFκB activation.

Share

COinS