Real-time EEG Signal Processing Based on TI's TMS320C6713 DSK
Document Type
Conference Proceeding
Publication Date
9-24-2013
Description
As one of the most powerful DSP products of Texas Instruments, the TMS320C6x DSPs have been used in a variety of areas in industries for real-time signal processing applications (e.g., communication, radar system, hearing aid etc.), and in research agencies for developing advanced algorithms and prototyping of a DSP system for specific applications. In education, the C6x DSPs were also widely used as a tool for bridging the gap between the digital signal processing theory and practical applications. The hardware-based laboratories have been successfully integrated into the digital signal processing course at many universities. However, most labs were designed only for very common signal processing problems such as the FIR/IIR filter design, FFT and so on. In this paper, a system for real-time EEG (electroencephalograph) signal acquisition, processing and presentation was proposed and will be implemented with the Texas Instrument's TMS320C6713 DSK being used as the hardware platform. As a practical application of C6713 DSK in biomedical signal processing, this project is designed as a complement of the current DSP laboratories of the Digital Signal Processors course for senior level undergraduates/graduates in Biomedical Engineering Technology Program (BMET) at the university. After the completion of the project, students are expected to be able to understand the scheme of a real world DSP system, process EEG signals for specific applications and gain the experience in processing the real world signals. In addition, this project is also intended for preparing the motivated high level students for future career in biomedical signal processing areas.
Citation Information
Tan, Zhibin; Blanton, William H.; and Zhang, Qianru. 2013. Real-time EEG Signal Processing Based on TI's TMS320C6713 DSK. ASEE Annual Conference and Exposition, Conference Proceedings. https://peer.asee.org/22407.pdf