"Relating the Annihilation Number and the Total Domination Number of a " by Wyatt J. Desormeaux, Teresa W. Haynes et al.
 

Relating the Annihilation Number and the Total Domination Number of a Tree

Document Type

Article

Publication Date

2-1-2013

Description

A set S of vertices in a graph G is a total dominating set if every vertex of G is adjacent to some vertex in S. The total domination number γt(G) is the minimum cardinality of a total dominating set in G. The annihilation number a(G) is the largest integer k such that the sum of the first k terms of the non-decreasing degree sequence of G is at most the number of edges in G. In this paper, we investigate relationships between the annihilation number and the total domination number of a graph. Let T be a tree of order n<2. We show that γt(T)≤a(T)+1, and we characterize the extremal trees achieving equality in this bound.

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 13
  • Usage
    • Abstract Views: 2
  • Captures
    • Readers: 8
see details

Share

COinS