"Model Calculations of Radiation-Induced Damage in Thymine Derivatives" by David Close, Gareth Forde et al.
 

Model Calculations of Radiation-Induced Damage in Thymine Derivatives

Document Type

Conference Proceeding

Publication Date

10-1-2003

Description

When the thymine base is oxidized, the resulting cation may deprotonate reversibly at N3, or irreversibly at >C5-CH3. In all thymine derivatives studied so far in the solid state, there is always a significant concentration of a radical formed by net H-abstraction from the >C5-CH 3. DFT calculations on this allyl-like radical are in good agreement with the experimental results for both the isotropic and anisotropic hyperfine couplings. There is a tendency for the thymine cation to deprotonate at N3 in solution. Calculations on the N3 deprotonated thymine cation yield two structures, one planar radical with an unusually large N1-C2 bond length, and one nonplanar radical with the N3 more than 25° out of the molecular plane. Calculations show that the structure with the lowest energy is the allyl-like radical.

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 7
  • Usage
    • Abstract Views: 2
  • Captures
    • Readers: 7
see details

Share

COinS