Lipoproteins of the Extravascular Space: Enhanced Macrophage Degradation of Low Density Lipoproteins From Interstitial Inflammatory Fluid

Document Type

Article

Publication Date

12-1-1985

Description

Current evidence has demonstrated that cholesteryl ester-load macrophages are important components of the atherosclerotic lesion. Additional studies have implicated low density lipoproteins (LDL) and circulating monocytes as central to the origin of lipid-laden foam cells found in the arterial wall. This is a result of the finding of accelerated macrophage uptake of LDL chemically modified by reaction with malondialdehyde (MDA-LDL), acetic anhydride (Ac-LDL), or incubation with arterial cells in vitro. In concert with these chemical modifications, we have previously demonstrated selective in vivo modification of LDL isolated from interstitial inflammatory fluid (IF) of the rabbit. Utilizing the polyvinyl sponge implant model, we reported that IF-LDL had an altered chemical composition, electrophoretic mobility, and particle size distribution when compared to LDL isolated from homologous plasma (WP-LDL). In this study reported herein, we examined the metabolism of IF-LDL by resident mouse peritoneal macrophages (MPM) in culture. IF-LDL was degraded substantially faster by MPM, and resulted in a substantial increase in cellular cholesteryl ester when compared to cells incubated with WP-LDL. IF-LDL binding to MPM was inhibited by Ac-LDL derived from WP-LDL, but only minimally by unmodified WP-LDL. Transmission electron microscopy of MPM revealed extensive lipid deposition in cells incubated with Ac-LDL and IF-LDL. These results implicate LDL from interstitial inflammatory fluid as an in vivo modified lipoprotein that can enhance uptake via the acetyl LDL receptor pathway in resident macrophages.

Share

COinS