Protein Synthesis Requirement for the Formation of Synaptic Elements
Document Type
Article
Publication Date
9-30-1985
Description
The formation of synapses in cell cultures of rat cerebellum was examined in the presence of the protein synthesis inhibitor cycloheximide. First, cell survival in the presence of 25 μg/ml cycloheximide was determined by phase contrast microscopy, trypan blue exclusion, total protein and uptake of [3H]gamma-aminobutyric acid (GABA). Neurons with 24 h incubation in cycloheximide appeared normal with little cell death, but by 48 h incubation the first signs of cell death were found. Some viable neurons were still found in cultures incubated continuously in cycloheximide for 72 h. Normally, the number of synapses seen in cerebellar cultures with the electron microscope shows an increase during the first several weeks in culture. However, the number of synapses in cultures treated with cycloheximide decreased, indicating that inhibition of protein synthesis at least partially inhibited synaptogenesis. Cycloheximide also inhibited the maintenance of synapses already formed as seen by the decrease in the number of synapses from the time the cycloheximide was added. To determine the sensitivity of the forming presynaptic element to cycloheximide, the development of apparent presynaptic elements was investigated. In cultures treated with polylysine-coated sepharose beads, neurites grew and formed apparent presynaptic elements with the bead taking the position of the postsynaptic element. Cultures pretreated with cycloheximide for 1 h followed by 24 h incubation with both cycloheximide and coated beads showed a normal number of apparent presynaptic elements. The first decrease in numbers was seen after 12 h preincubation and 12 h incubation with both cycloheximide and coated beads. Even after 72 h continuous incubation some apparent presynaptic elements could be formed although at reduced levels. Results presented here suggest that continuous protein synthesis is not necessary for the formation of the presynaptic element, but that active protein synthesis is required for neurons to form and maintain postsynaptic elements.
Citation Information
Burry, Richard W.. 1985. Protein Synthesis Requirement for the Formation of Synaptic Elements. Brain Research. Vol.344(1). 109-119. https://doi.org/10.1016/0006-8993(85)91194-1 PMID: 4041860 ISSN: 0006-8993