Microvasculature of the Rabbit Urinary Bladder
Document Type
Article
Publication Date
1-1-1995
Description
Background: The urinary bladder requires a rich blood supply to maintain its functions, the storage and release of urine. Specialized properties of the bladder vasculature might be anticipated to ensure the integrity of this blood supply, because it is known that blood flow is reduced by distension during bladder filling. However, the bladder vasculature has been described in detail only at the gross level. A comprehensive, threedimensional view of the blood supply to the bladder wall is presented here. Methods: The microvasculature of the bladder of male New Zealand white rabbits was described using the combination of vascular corrosion casting, alkali digestion, light microscopy, and scanning and transmission electron microscopy. Following administration of an anticoagulant and an overdose of anesthetic, the abdominal aorta was cannulated just above the inferior mesenteric artery to permit flushing of the distal vasculature. The bladder vasculature was cleared of blood with buffered saline and then either perfuse‐fixed with buffered 2% glutaraldehyde and sectioned, or filled with “Mercox” resin to prepare vascular corrosion casts. Casts were cleaned with NaOH, formic acid, and water. In some cases fixed bladders were partially digested with NaOH to expose the mucosal capillary plexus. Results: The bladder is supplied with blood by single, left and right vesicular branches of the internal or external iliac arteries. The serpentine vesicular arteries extend along the lateral borders of the bladder from base to apex just deep to the serosal surface and send dorsal and ventral branches to supply the dorsal and ventral bladder walls. Veins accompany the arteries and exhibit numerous valves. A very dense complex of vessels at the apex of the bladder apparently serves to accommodate bladder distension. The muscularis and submucosa contains few vessels, but the mucosa is well vascularized. An especially dense capillary plexus is present in the lamina propria at its junction with the transitional epithelium. In the relaxed bladder these capillaries lie in grooves formed by the basal layers of the epithelium. The endothelial cells of these capillaries display few cytoplasmic vesicles and are continuous or fenestrated. These capillaries are often invested with pericytes. The mucosal capillary plexus may be associated with an epithelial transport function or may be necessary for urothelial metabolism or maintenance of the barrier function of the urothelium. Unusual capillary tufts, possibly associated with vascular lymphatic tissue, are found associated with the main vessels on the lateral walls in the basal half of the bladder. Conclusions: These methods present a clear, comprehensive, three‐dimensional view of the microvasculature of the bladder wall. They also identify several unique features of this vasculature and provide a basis for studies of the response of this vasculature to pathologic states and experimental manipulation.
Citation Information
Hossler, Fred E.; and Monson, Frederick C.. 1995. Microvasculature of the Rabbit Urinary Bladder. The Anatomical Record. Vol.243(4). 438-448. https://doi.org/10.1002/ar.1092430406 PMID: 8597290 ISSN: 0003-276X