Distribution Centers in Graphs
Document Type
Article
Publication Date
7-10-2018
Description
For a graph G=(V,E) and a set S⊆V, the boundary of S is the set of vertices in V∖S that have a neighbor in S. A non-empty set S⊆V is a distribution center if for every vertex v in the boundary of S, v is adjacent to a vertex in S, say u, where u has at least as many neighbors in S as v has in V∖S. The distribution center number of a graph G is the minimum cardinality of a distribution center of G. We introduce distribution centers as graph models for supply–demand type distribution. We determine the distribution center number for selected families of graphs and give bounds on the distribution center number for general graphs. Although not necessarily true for general graphs, we show that for trees the domination number and the maximum degree are upper bounds on the distribution center number.
Citation Information
Desormeaux, Wyatt J.; Haynes, Teresa W.; Hedetniemi, Stephen T.; and Moore, Christian. 2018. Distribution Centers in Graphs. Discrete Applied Mathematics. Vol.243 186-193. https://doi.org/10.1016/j.dam.2018.02.009 ISSN: 0166-218X