A Low-Cost, Compact Electrochemical Analyzer Based on an Open-Source Microcontroller

Author Names and Emails

Michael AddoFollow

Authors' Affiliations

Michael K. Addo, Department of Chemistry, College of Art and Science, East Tennessee State University, Johnson City, TN. Anna E. Curtis, Department of Chemistry, College of Art and Science, East Tennessee State University, Johnson City, TN. Gregory W. Bishop, Department of Chemistry, College of Art and Science, East Tennessee State University, Johnson City, TN.

Location

Culp Center Ballroom

Start Date

4-25-2023 9:00 AM

End Date

4-25-2023 11:00 AM

Poster Number

39

Faculty Sponsor’s Department

Chemistry

Name of Project's Faculty Sponsor

Gregory Bishop

Additional Sponsors

Catherine McCusker, Dane Scott

Classification of First Author

Graduate Student-Master’s

Competition Type

Competitive

Type

Poster Presentation

Project's Category

Electrochemical Analysis

Abstract or Artist's Statement

Electrochemical measurements are utilized in various fields, including healthcare (e.g., potentiometric measurements for electrolytes in blood and blood gas, amperometric biosensing of glucose as in blood glucose meters), water quality (e.g., pH measurement, voltammetric analyses for heavy metals), and energy. Much of the appeal of electrochemical analyses can be attributed to the relative simplicity, low cost and lack of maintenance associated with electrochemical instruments, along with techniques that can exhibit high sensitivity and selectivity, wide linear dynamic range, and low limits of detection for many analytes. While commercial electrochemical analyzers are less expensive than many other instruments for chemical analyses and are available from various manufacturers, versatility and performance often coincide with added expense. Recently, the development of low-cost, adaptable, open-source chemical instruments, including electrochemical analyzers, has emerged as a topic of great interest in the scientific community. In contrast to commercial instruments, for which schematics and underlying operation details are often obscured – severely limiting modifications and improvements, creators of open-source instruments release all the necessary information for reproduction of the hardware and software. As a result, open-source instruments not only serve as excellent teaching tools for novices to gain experience in electronics and programming, but also present opportunity to design and develop low-cost, portable instruments, which have particular significance for point-of-care sensing applications, use in resource-limited settings, and the rapidly developing field of on-body sensors. In this work, we report the design of a low-cost, compact electrochemical analyzer based on an open-source Arduino microcontroller. The instrument is capable of performing electrochemical analyses such as cyclic and linear sweep voltammetry with an operating range of ± 138 ��A and ± 1.65 V. Performance of the platform is investigated with low-cost pencil graphite electrodes and results compared to commercial potentiostats.

This document is currently not available here.

Share

COinS
 
Apr 25th, 9:00 AM Apr 25th, 11:00 AM

A Low-Cost, Compact Electrochemical Analyzer Based on an Open-Source Microcontroller

Culp Center Ballroom

Electrochemical measurements are utilized in various fields, including healthcare (e.g., potentiometric measurements for electrolytes in blood and blood gas, amperometric biosensing of glucose as in blood glucose meters), water quality (e.g., pH measurement, voltammetric analyses for heavy metals), and energy. Much of the appeal of electrochemical analyses can be attributed to the relative simplicity, low cost and lack of maintenance associated with electrochemical instruments, along with techniques that can exhibit high sensitivity and selectivity, wide linear dynamic range, and low limits of detection for many analytes. While commercial electrochemical analyzers are less expensive than many other instruments for chemical analyses and are available from various manufacturers, versatility and performance often coincide with added expense. Recently, the development of low-cost, adaptable, open-source chemical instruments, including electrochemical analyzers, has emerged as a topic of great interest in the scientific community. In contrast to commercial instruments, for which schematics and underlying operation details are often obscured – severely limiting modifications and improvements, creators of open-source instruments release all the necessary information for reproduction of the hardware and software. As a result, open-source instruments not only serve as excellent teaching tools for novices to gain experience in electronics and programming, but also present opportunity to design and develop low-cost, portable instruments, which have particular significance for point-of-care sensing applications, use in resource-limited settings, and the rapidly developing field of on-body sensors. In this work, we report the design of a low-cost, compact electrochemical analyzer based on an open-source Arduino microcontroller. The instrument is capable of performing electrochemical analyses such as cyclic and linear sweep voltammetry with an operating range of ± 138 ��A and ± 1.65 V. Performance of the platform is investigated with low-cost pencil graphite electrodes and results compared to commercial potentiostats.