Development of an Iontophoresis-Coupled Microneedle Skin Patch of Naloxone for Emergency Treatment of Opioid Overdose

Authors' Affiliations

Akeemat O. Tijani, Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, 37614. Ashana Puri, Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, 37614. Maria J. Peláez, Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030. Prashant Dogra, Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030. Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, 10065

Location

Culp Center Rm. 311

Start Date

4-25-2023 1:20 PM

End Date

4-25-2023 1:40 PM

Faculty Sponsor’s Department

Pharmaceutical Sciences

Name of Project's Faculty Sponsor

Ashana Puri

Classification of First Author

Graduate Student-Doctoral

Competition Type

Competitive

Type

Oral Presentation

Project's Category

Healthcare and Medicine

Abstract or Artist's Statement

The use of naloxone (NAL) for opioid overdose treatment is limited mostly to parenteral (intravenous, intramuscular, and subcutaneous) or intranasal route due to significant first-pass metabolism associated with oral delivery. Injectables are painful and frequent administrations by the existing routes for patient stabilization due to the short half-life of NAL are needed. Alternative delivery systems would be beneficial if they provide a balance between sustained release properties and a comparable rapid release as is achievable with the available parenteral forms. Thus, the goal of our study is to design a clinically viable polymeric microneedle (MN) patch for NAL. MNs of varying geometric dimensions were fabricated. In vitro skin permeation data for the best-performing patch was mathematically modeled and predictions on geometric parameters for a MN patch of comparable pharmacokinetic properties to parenteral and intranasal NAL as seen in the market were determined. From these evaluations, the need to devise ways to improve flux and amount of drug released from a patch per time was identified. We explored the influence of iontophoretically driving ionized drug content in MN patches on cumulative permeation of NAL from the best-performing MN patch. To optimize the iontophoresis parameters, the influence of citrate phosphate buffer strength on drug release profile was evaluated. Also, the impact of combining iontophoresis and higher drug loading was evaluated. A reduced lag time of about 5-15 min was observed with fabricated polymeric MN patches. From the polymeric MN patch P1 loaded with 50 mg/mL of NAL, a significant drug flux of 15.09 ± 7.68 ��g/cm2/h was observed in the first 1 h (p.Increasing MN length and density (P2 and P3) made a significant difference in the amount permeated and flux (pin-vitrorelease from the best-performing patch (P3) revealed the significance of needle base diameter and needle count in improving systemic pharmacokinetics of NAL from the MN patches. With this approach, an optimized design of the patch that can reproduce the clinical pharmacokinetics of NAL obtained with commercial devices was predicted. Investigation on the influence of iontophoresis in improving flux from the P3 patch shows about a 2-fold (p

This document is currently not available here.

Share

COinS
 
Apr 25th, 1:20 PM Apr 25th, 1:40 PM

Development of an Iontophoresis-Coupled Microneedle Skin Patch of Naloxone for Emergency Treatment of Opioid Overdose

Culp Center Rm. 311

The use of naloxone (NAL) for opioid overdose treatment is limited mostly to parenteral (intravenous, intramuscular, and subcutaneous) or intranasal route due to significant first-pass metabolism associated with oral delivery. Injectables are painful and frequent administrations by the existing routes for patient stabilization due to the short half-life of NAL are needed. Alternative delivery systems would be beneficial if they provide a balance between sustained release properties and a comparable rapid release as is achievable with the available parenteral forms. Thus, the goal of our study is to design a clinically viable polymeric microneedle (MN) patch for NAL. MNs of varying geometric dimensions were fabricated. In vitro skin permeation data for the best-performing patch was mathematically modeled and predictions on geometric parameters for a MN patch of comparable pharmacokinetic properties to parenteral and intranasal NAL as seen in the market were determined. From these evaluations, the need to devise ways to improve flux and amount of drug released from a patch per time was identified. We explored the influence of iontophoretically driving ionized drug content in MN patches on cumulative permeation of NAL from the best-performing MN patch. To optimize the iontophoresis parameters, the influence of citrate phosphate buffer strength on drug release profile was evaluated. Also, the impact of combining iontophoresis and higher drug loading was evaluated. A reduced lag time of about 5-15 min was observed with fabricated polymeric MN patches. From the polymeric MN patch P1 loaded with 50 mg/mL of NAL, a significant drug flux of 15.09 ± 7.68 ��g/cm2/h was observed in the first 1 h (p.Increasing MN length and density (P2 and P3) made a significant difference in the amount permeated and flux (pin-vitrorelease from the best-performing patch (P3) revealed the significance of needle base diameter and needle count in improving systemic pharmacokinetics of NAL from the MN patches. With this approach, an optimized design of the patch that can reproduce the clinical pharmacokinetics of NAL obtained with commercial devices was predicted. Investigation on the influence of iontophoresis in improving flux from the P3 patch shows about a 2-fold (p