Exploration of Cholinergic and Noradrenergic Innervation of the Human Atrioventricular Node
Location
Culp Ballroom
Start Date
4-7-2022 9:00 AM
End Date
4-7-2022 12:00 PM
Poster Number
114
Faculty Sponsor’s Department
Biomedical Sciences
Name of Project's Faculty Sponsor
Donald Hoover
Competition Type
Competitive
Type
Poster Presentation
Project's Category
Cardiovascular System
Abstract or Artist's Statement
In the normal heart, the atrioventricular node (AVN) is part of the sole pathway between the atria and ventricles and is responsible for transmitting and coordinating atrial and ventricular contractions. The AVN electrically connects the atria and ventricles of the heart and is part of the electrical conduction system. Conduction within this system is highly regulated by the autonomic nervous system. The complex neurochemical anatomy of this region has been studied extensively in mice and other small animals but not in humans. The goal of this study was to provide detailed neurochemical characterization of parasympathetic (cholinergic) and sympathetic (noradrenergic) innervation of the human AVN, which is the lead component of the conducting system. Using immunohistochemistry, we have investigated the innervation of the AVN region in samples collected from human hearts that were rejected for transplantation. Tissues were fixed in 4% paraformaldehyde, cryoprotected, and sectioned frozen at 30um thickness. Sections through the AVN were cut in the horizontal plane and collected in representative sets on charged slides. Each set of slides was stained for a different phenotypic marker using the VECTOR Elite ABC kits and ImmmPACT VIP Chromogen. To aid in locating the AVN, we used anti-Connexin-43(Cx-43). Unlike surrounding myocardium, nodal tissue lacks significant Cx-43. Cholinergic nerves were stained with anti-vesicular acetylcholine transporter (VAChT).Noradrenergic nerves were stained with anti-tyrosine hydroxylase (TH). We evaluated tissue from two patients and obtained similar results. The AVN received prominent input from cholinergic and noradrenergic nerves, with cholinergic being dominant. The AVN displayed a greater density of parasympathetic and sympathetic innervation compared to surrounding regions. Sympathetic innervation is what causes an increase in conduction speed in the AVN, while parasympathetic innervation is what causes a decrease in conduction speed. Based on previous pharmacological evidence and observation of innervation in other species, the AVN is a highly controlled area for cardiac regulation. Our research implies that parasympathetic innervation is more highly regulated in the AVN and that parasympathetic innervation could play a larger role in cardiac conduction than sympathetic innervation.
Exploration of Cholinergic and Noradrenergic Innervation of the Human Atrioventricular Node
Culp Ballroom
In the normal heart, the atrioventricular node (AVN) is part of the sole pathway between the atria and ventricles and is responsible for transmitting and coordinating atrial and ventricular contractions. The AVN electrically connects the atria and ventricles of the heart and is part of the electrical conduction system. Conduction within this system is highly regulated by the autonomic nervous system. The complex neurochemical anatomy of this region has been studied extensively in mice and other small animals but not in humans. The goal of this study was to provide detailed neurochemical characterization of parasympathetic (cholinergic) and sympathetic (noradrenergic) innervation of the human AVN, which is the lead component of the conducting system. Using immunohistochemistry, we have investigated the innervation of the AVN region in samples collected from human hearts that were rejected for transplantation. Tissues were fixed in 4% paraformaldehyde, cryoprotected, and sectioned frozen at 30um thickness. Sections through the AVN were cut in the horizontal plane and collected in representative sets on charged slides. Each set of slides was stained for a different phenotypic marker using the VECTOR Elite ABC kits and ImmmPACT VIP Chromogen. To aid in locating the AVN, we used anti-Connexin-43(Cx-43). Unlike surrounding myocardium, nodal tissue lacks significant Cx-43. Cholinergic nerves were stained with anti-vesicular acetylcholine transporter (VAChT).Noradrenergic nerves were stained with anti-tyrosine hydroxylase (TH). We evaluated tissue from two patients and obtained similar results. The AVN received prominent input from cholinergic and noradrenergic nerves, with cholinergic being dominant. The AVN displayed a greater density of parasympathetic and sympathetic innervation compared to surrounding regions. Sympathetic innervation is what causes an increase in conduction speed in the AVN, while parasympathetic innervation is what causes a decrease in conduction speed. Based on previous pharmacological evidence and observation of innervation in other species, the AVN is a highly controlled area for cardiac regulation. Our research implies that parasympathetic innervation is more highly regulated in the AVN and that parasympathetic innervation could play a larger role in cardiac conduction than sympathetic innervation.