Microsporidial Attachment and Host Cell Signaling
Loading...
Faculty Sponsor’s Department
Biomedical Sciences
Competition Type
Competitive
Type
Oral Non-Competitive
Project's Category
Biological Sciences, Cell Biology, AIDS
Abstract or Artist's Statement
Microsporidia exploit several targets for binding to host cells. Attachment is known to be an important first step before infection, and by blocking attachment, host cell infection decreases. This project seeks to determine if microsporidia use an ADAM (A Disintegrin And Metalloprotease) like protein to bind to host integrins. To test this, spore adherence assays employed a small, generated peptide that selected the integrin binding domain of the ADAM like protein. Afterwards, spore attachment to cell culture was quantified to determine if the peptide blocked spore attachment to cell monolayers. This project expands previous work by testing attachment of an additional microsporidia species. Finally, cell lysates pretreated with the peptide were screened for phosphorylation of FAK (Focal Adhesion Kinase), a common signaling pathway for activated integrins. Preliminary results suggest that microsporidial ADAM peptides bind to host cell integrins to decrease spore adherence and induce host cell signaling under the FAK pathway.
Microsporidial Attachment and Host Cell Signaling
Microsporidia exploit several targets for binding to host cells. Attachment is known to be an important first step before infection, and by blocking attachment, host cell infection decreases. This project seeks to determine if microsporidia use an ADAM (A Disintegrin And Metalloprotease) like protein to bind to host integrins. To test this, spore adherence assays employed a small, generated peptide that selected the integrin binding domain of the ADAM like protein. Afterwards, spore attachment to cell culture was quantified to determine if the peptide blocked spore attachment to cell monolayers. This project expands previous work by testing attachment of an additional microsporidia species. Finally, cell lysates pretreated with the peptide were screened for phosphorylation of FAK (Focal Adhesion Kinase), a common signaling pathway for activated integrins. Preliminary results suggest that microsporidial ADAM peptides bind to host cell integrins to decrease spore adherence and induce host cell signaling under the FAK pathway.