Faculty Sponsor’s Department
Chemistry
Name of Project's Faculty Sponsor
Dr. Catherine McCusker
Additional Sponsors
Marina Roginskaya, Cassandra Eagle
Type
Oral Competitive
Project's Category
Inorganic Chemistry
Abstract or Artist's Statement
About 85% of the world’s energy is derived from non-renewable sources—coal, petroleum, and natural gas. Solar photocatalysis is one way to potentially generate renewable fuels. Zinc dipyrrin complexes have the potential to be efficient sensitizers for reductive photochemistry, but their ability to form long-lived triplet excited states needs further investigation. The overall aim of this research is to compare the photophysical properties zinc and boron dipyrrin complexes and investigate the role of the charge separated state in triplet state formation. This presentation will describe the synthesis and purification of zinc and boron dipyrrin complexes and their photophysical characterization, including fluorescence quantum yields in a series of solvents and their emission at low temperatures.
The Contribution of Charge Separation in Triplet State Formation in Zinc Dipyrrin Photosensitizers
About 85% of the world’s energy is derived from non-renewable sources—coal, petroleum, and natural gas. Solar photocatalysis is one way to potentially generate renewable fuels. Zinc dipyrrin complexes have the potential to be efficient sensitizers for reductive photochemistry, but their ability to form long-lived triplet excited states needs further investigation. The overall aim of this research is to compare the photophysical properties zinc and boron dipyrrin complexes and investigate the role of the charge separated state in triplet state formation. This presentation will describe the synthesis and purification of zinc and boron dipyrrin complexes and their photophysical characterization, including fluorescence quantum yields in a series of solvents and their emission at low temperatures.