The Effects of Invasive Plant Species on Pollen Transfer Networks in Southern Appalachian Floral Communities

Authors' Affiliations

Daniel Barker, Department of Biological Science, College of Arts and Sciences, East Tennessee State University, Johnson City, TN.

Location

Ballroom

Start Date

4-5-2018 8:00 AM

End Date

4-5-2018 12:00 PM

Poster Number

73

Name of Project's Faculty Sponsor

Dr. Gerardo Arceo- Gomez

Faculty Sponsor's Department

Biological Sciences

Classification of First Author

Graduate Student-Master’s

Type

Poster: Competitive

Project's Category

Natural Sciences

Abstract or Artist's Statement

Approximately 90% of flowering plants depend on pollinators for reproduction. The stability and effectiveness of plant-pollinator interactions are crucial for ecosystem function. Increasing numbers of non-native plants are naturalized in plant communities and may alter pollination success of native plant species. Thus, invasive species have the potential to alter community function and stability. However, the effects of invasive species on community-wide plant-pollinator interactions are poorly understood. While the effects of invasive species on the structure of plant-pollinator networks are well studied. However, these studies have relied on pollinator visitation data that is only one component of the pollination process. Thus, the effects of invasive species on pollen transport and pollen transfer dynamics remain unknown and this may misrepresent the true nature of invasive effects on community-wide plant-pollinator interactions. Pollen transport networks may give more accurate representations of plant-pollinator interactions by providing information on pollen collection by floral visitors. Therefore, in this study I evaluate the effect of the invasive Cirsium arvense on pollen transport networks to improve our understanding of the impact that invasive plants have on community-wide plant-pollinator interactions. Pollinators were collected on one invaded and one non-invaded site once weekly throughout the flowering season (May- August of 2017). Pollen was isolated for each insect and pollen samples were identified with a pollen reference library and counted using a hemocytometer. 154 insect morphospecies were collected carrying 73 pollen species. Preliminary results indicate that Cirsium arvense has no impact on network structure: connectance (0.15 and 0.18), link density (3.01 and 2.23), and weighted nestedness (0.68 and 0.75), for invaded and non-invaded respectively. However, the role of individual species within the network seems to vary between sites suggesting that Cirsium arvense may change community dynamics (identity of species-pair interactions). Future analysis will evaluate invasive species effects at the species level.

This document is currently not available here.

Share

COinS
 
Apr 5th, 8:00 AM Apr 5th, 12:00 PM

The Effects of Invasive Plant Species on Pollen Transfer Networks in Southern Appalachian Floral Communities

Ballroom

Approximately 90% of flowering plants depend on pollinators for reproduction. The stability and effectiveness of plant-pollinator interactions are crucial for ecosystem function. Increasing numbers of non-native plants are naturalized in plant communities and may alter pollination success of native plant species. Thus, invasive species have the potential to alter community function and stability. However, the effects of invasive species on community-wide plant-pollinator interactions are poorly understood. While the effects of invasive species on the structure of plant-pollinator networks are well studied. However, these studies have relied on pollinator visitation data that is only one component of the pollination process. Thus, the effects of invasive species on pollen transport and pollen transfer dynamics remain unknown and this may misrepresent the true nature of invasive effects on community-wide plant-pollinator interactions. Pollen transport networks may give more accurate representations of plant-pollinator interactions by providing information on pollen collection by floral visitors. Therefore, in this study I evaluate the effect of the invasive Cirsium arvense on pollen transport networks to improve our understanding of the impact that invasive plants have on community-wide plant-pollinator interactions. Pollinators were collected on one invaded and one non-invaded site once weekly throughout the flowering season (May- August of 2017). Pollen was isolated for each insect and pollen samples were identified with a pollen reference library and counted using a hemocytometer. 154 insect morphospecies were collected carrying 73 pollen species. Preliminary results indicate that Cirsium arvense has no impact on network structure: connectance (0.15 and 0.18), link density (3.01 and 2.23), and weighted nestedness (0.68 and 0.75), for invaded and non-invaded respectively. However, the role of individual species within the network seems to vary between sites suggesting that Cirsium arvense may change community dynamics (identity of species-pair interactions). Future analysis will evaluate invasive species effects at the species level.