DEFICIENCY OF ATAXIA-TELANGIECTASIA MUTATED KINASE AFFECTS AUTOPHAGY AFTER MYOCARDIAL INFARCTION

Authors' Affiliations

1Department of Biomedical Sciences, James H Quillen College of Medicine 2James H Quillen Veterans Affairs Medical Center East Tennessee State University Johnson City, TN 37614

Location

Ballroom

Start Date

4-5-2018 8:00 AM

End Date

4-5-2018 12:00 PM

Poster Number

38

Name of Project's Faculty Sponsor

Dr. Krishna Singh

Faculty Sponsor's Department

Department of Biomedical Sciences

Classification of First Author

Undergraduate Student

Type

Poster: Competitive

Project's Category

Biomedical and Health Sciences

Abstract or Artist's Statement

Background: Autophagy is a conserved physiological process in the body that functions to maintain homeostasis via degradation and recycling of dysfunctional proteins and even entire organelles. It is typically triggered by nutritional stress and/or growth factor deprivation and ultimately results in the packaging of cellular components into autophagosomes. These autophagosomes then fuse with lysosomes to be degraded. Autophagy is suggested to play a significant role in cardiac remodeling, particularly following myocardial infarction (MI). Ataxia-telangiectasia mutated kinase (ATM) is a cell cycle checkpoint protein activated in response to DNA damage. Mutations in ATM cause a multi-systemic disease known as Ataxia-telangiectasia (AT). The present study aims to investigate the relationship between ATM and autophagy in the heart, particularly post-MI. Methods: Wild-type (WT) and ATM heterozygous (hKO; aged ~4 months) were injected with either bafilomycin (Baf; autophagy inhibitor) or rapamycin (Rap; autophagy activator) for 30 minutes. MI was then induced mice by ligation of the left anterior descending coronary artery. Heart function was measured using M-mode echocardiography 4 hours post-MI. For cellular analysis of autophagy, confluent cultures of cardiac fibroblasts were isolated from adult male rats and treated with KU-55933 (KU; specific ATM inhibitor) in serum-free media for 4 hours. Cardiac fibroblasts were also isolated from ATM WT, heterozygous (hKO), and knockout (KO) mice, grown to confluency, and serum-starved for 4 hours. Levels of microtubule-associated protein light chain 3-II (LC3-II), a marker for autophagy, was examined in the heart and cell lysates using western blots. Results: M-mode echocardiography revealed that MI decreases heart function in both genotypes as measured by decreased %FS and EF. No change in heart function was observed between WT-MI and hKO-MI groups following Baf treatment. Rap treatment resulted in the functional recovery of the heart in WT-MI, not in hKO-MI group. Levels of LC3-II protein were higher in hKO-sham versus WT-sham hearts. MI decreased LC3-II protein in hKO-MI, not in WT-MI group. Baf treatment further decreased LC3-II protein levels in hKO-MI group. LC3-II levels were lower in KU-treated rat cardiac fibroblasts when compared to control. Cardiac fibroblasts isolated from hKO and KO hearts exhibited decreased LC3-II levels versus those isolated from WT hearts. Conclusion: Although further investigations are needed to confirm our findings, these data provide evidence that ATM deficiency hinders improvement in heart function post-MI following activation of autophagy. ATM deficiency results in reduced autophagy post-MI, an effect that appears to be exaggerated following autophagy inhibition. ATM deficiency also reduces autophagy in rat and mouse cardiac fibroblasts.

This document is currently not available here.

Share

COinS
 
Apr 5th, 8:00 AM Apr 5th, 12:00 PM

DEFICIENCY OF ATAXIA-TELANGIECTASIA MUTATED KINASE AFFECTS AUTOPHAGY AFTER MYOCARDIAL INFARCTION

Ballroom

Background: Autophagy is a conserved physiological process in the body that functions to maintain homeostasis via degradation and recycling of dysfunctional proteins and even entire organelles. It is typically triggered by nutritional stress and/or growth factor deprivation and ultimately results in the packaging of cellular components into autophagosomes. These autophagosomes then fuse with lysosomes to be degraded. Autophagy is suggested to play a significant role in cardiac remodeling, particularly following myocardial infarction (MI). Ataxia-telangiectasia mutated kinase (ATM) is a cell cycle checkpoint protein activated in response to DNA damage. Mutations in ATM cause a multi-systemic disease known as Ataxia-telangiectasia (AT). The present study aims to investigate the relationship between ATM and autophagy in the heart, particularly post-MI. Methods: Wild-type (WT) and ATM heterozygous (hKO; aged ~4 months) were injected with either bafilomycin (Baf; autophagy inhibitor) or rapamycin (Rap; autophagy activator) for 30 minutes. MI was then induced mice by ligation of the left anterior descending coronary artery. Heart function was measured using M-mode echocardiography 4 hours post-MI. For cellular analysis of autophagy, confluent cultures of cardiac fibroblasts were isolated from adult male rats and treated with KU-55933 (KU; specific ATM inhibitor) in serum-free media for 4 hours. Cardiac fibroblasts were also isolated from ATM WT, heterozygous (hKO), and knockout (KO) mice, grown to confluency, and serum-starved for 4 hours. Levels of microtubule-associated protein light chain 3-II (LC3-II), a marker for autophagy, was examined in the heart and cell lysates using western blots. Results: M-mode echocardiography revealed that MI decreases heart function in both genotypes as measured by decreased %FS and EF. No change in heart function was observed between WT-MI and hKO-MI groups following Baf treatment. Rap treatment resulted in the functional recovery of the heart in WT-MI, not in hKO-MI group. Levels of LC3-II protein were higher in hKO-sham versus WT-sham hearts. MI decreased LC3-II protein in hKO-MI, not in WT-MI group. Baf treatment further decreased LC3-II protein levels in hKO-MI group. LC3-II levels were lower in KU-treated rat cardiac fibroblasts when compared to control. Cardiac fibroblasts isolated from hKO and KO hearts exhibited decreased LC3-II levels versus those isolated from WT hearts. Conclusion: Although further investigations are needed to confirm our findings, these data provide evidence that ATM deficiency hinders improvement in heart function post-MI following activation of autophagy. ATM deficiency results in reduced autophagy post-MI, an effect that appears to be exaggerated following autophagy inhibition. ATM deficiency also reduces autophagy in rat and mouse cardiac fibroblasts.