Investigations of Pre and Post treatment protocols in the fabrication of carbon fiber ultramicro- and nanoelectrodes
Location
BAYS MTN. ROOM 125
Start Date
4-4-2018 10:20 AM
End Date
4-4-2018 10:35 AM
Name of Project's Faculty Sponsor
Dr. Gregory W. Bishop
Faculty Sponsor's Department
Chemistry
Type
Oral Presentation
Project's Category
Natural Sciences
Abstract or Artist's Statement
Ultramicroelectrodes (UMEs) have gained considerable attention over the few past decades due to the important roles they play in electrochemical studies. Electrodes with dimension less than 25 mm can generally be classified as UMEs. These electrodes exhibit enhanced electrochemical properties as their dimensions get smaller hence making nanoelectrode (production of electrodes with limiting dimensions less than 100 nm) a continuing area of interest in research. Nanometer size electrodes have advantages of high sensitivity which enables them to be used in fields such as single particle characterization and single cell analysis, and fast electron and mass transport which permits use for studying short-lived and transient electrochemical reactions such as those involved in neurochemistry. Nanoelectrodes can be fabricated via a few different strategies which include but are not limited to electrochemically etching a thin metal wire down to a cone shape or flame-etching a carbon fiber, and chemical vapor deposition of carbon in nanopipette. This work seeks to employ the use of the laser-assisted pulling method to fabricate carbon fiber electrodes sealed in glass capillary tubes. Effects of various pre- and post- treatment techniques on electrode size and stability are explored.
Key words: Electrodes, Electrochemical, carbon fiber.
Investigations of Pre and Post treatment protocols in the fabrication of carbon fiber ultramicro- and nanoelectrodes
BAYS MTN. ROOM 125
Ultramicroelectrodes (UMEs) have gained considerable attention over the few past decades due to the important roles they play in electrochemical studies. Electrodes with dimension less than 25 mm can generally be classified as UMEs. These electrodes exhibit enhanced electrochemical properties as their dimensions get smaller hence making nanoelectrode (production of electrodes with limiting dimensions less than 100 nm) a continuing area of interest in research. Nanometer size electrodes have advantages of high sensitivity which enables them to be used in fields such as single particle characterization and single cell analysis, and fast electron and mass transport which permits use for studying short-lived and transient electrochemical reactions such as those involved in neurochemistry. Nanoelectrodes can be fabricated via a few different strategies which include but are not limited to electrochemically etching a thin metal wire down to a cone shape or flame-etching a carbon fiber, and chemical vapor deposition of carbon in nanopipette. This work seeks to employ the use of the laser-assisted pulling method to fabricate carbon fiber electrodes sealed in glass capillary tubes. Effects of various pre- and post- treatment techniques on electrode size and stability are explored.
Key words: Electrodes, Electrochemical, carbon fiber.