Author Names and Emails

Denise HarnessFollow

Authors' Affiliations

Denise Harness, Department of Mathematics and Statistics, Honors College, East Tennessee State University, Johnson City, TN.

Location

Ballroom

Start Date

4-5-2018 8:00 AM

End Date

4-5-2018 12:00 PM

Poster Number

51

Name of Project's Faculty Sponsor

Dr. Jeff Knisley

Faculty Sponsor's Department

Mathematics & Statistics

Classification of First Author

Undergraduate Student

Type

Poster: Competitive

Project's Category

Natural Sciences

Abstract or Artist's Statement

Advancements in DNA microarray data sequencing have created the need for sophisticated machine learning algorithms and feature selection methods. Probabilistic graphical models, in particular, have been used to identify whether microarrays or genes cluster together in groups of individuals having a similar diagnosis. These clusters of genes are informative, but can be misleading when every gene is used in the calculation. First feature reduction techniques are explored, however the size and nature of the data prevents traditional techniques from working efficiently. Our method is to use the partial correlations between the features to create a precision matrix and predict which associations between genes are most important to predicting Leukemia diagnosis. This technique reduces the number of genes to a fraction of the original. In this approach, partial correlations are then extended into a spectral clustering approach. In particular, a variety of different Laplacian matrices are generated from the network of connections between features, and each implies a graphical network model of gene interconnectivity. Various edge and vertex weighted Laplacians are considered and compared against each other in a probabilistic graphical modeling approach. The resulting multivariate Gaussian distributed clusters are subsequently analyzed to determine which genes are activated in a patient with Leukemia. Finally, the results of this are compared against other feature engineering approaches to assess its accuracy on the Leukemia data set. The initial results show the partial correlation approach of feature selection predicts the diagnosis of a Leukemia patient with almost the same accuracy as using a machine learning algorithm on the full set of genes. More calculations of the precision matrix are needed to ensure the set of most important genes is correct. Additionally more machine learning algorithms will be implemented using the full and reduced data sets to further validate the current prediction accuracy of the partial correlation method.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Previous Versions

Apr 6 2018

Share

COinS
 
Apr 5th, 8:00 AM Apr 5th, 12:00 PM

A Comparison of Unsupervised Methods for DNA Microarray Leukemia Data

Ballroom

Advancements in DNA microarray data sequencing have created the need for sophisticated machine learning algorithms and feature selection methods. Probabilistic graphical models, in particular, have been used to identify whether microarrays or genes cluster together in groups of individuals having a similar diagnosis. These clusters of genes are informative, but can be misleading when every gene is used in the calculation. First feature reduction techniques are explored, however the size and nature of the data prevents traditional techniques from working efficiently. Our method is to use the partial correlations between the features to create a precision matrix and predict which associations between genes are most important to predicting Leukemia diagnosis. This technique reduces the number of genes to a fraction of the original. In this approach, partial correlations are then extended into a spectral clustering approach. In particular, a variety of different Laplacian matrices are generated from the network of connections between features, and each implies a graphical network model of gene interconnectivity. Various edge and vertex weighted Laplacians are considered and compared against each other in a probabilistic graphical modeling approach. The resulting multivariate Gaussian distributed clusters are subsequently analyzed to determine which genes are activated in a patient with Leukemia. Finally, the results of this are compared against other feature engineering approaches to assess its accuracy on the Leukemia data set. The initial results show the partial correlation approach of feature selection predicts the diagnosis of a Leukemia patient with almost the same accuracy as using a machine learning algorithm on the full set of genes. More calculations of the precision matrix are needed to ensure the set of most important genes is correct. Additionally more machine learning algorithms will be implemented using the full and reduced data sets to further validate the current prediction accuracy of the partial correlation method.