Title

The Effects of a Novel Inhibitor of Tumor Necrosis Factor (TNF) Alpha on Prepulse Inhibition and Microglial Activation in Two Distinct Rodent Models of Schizophrenia

Document Type

Article

Publication Date

5-21-2021

Description

Increased neuroinflammation has been shown in individuals diagnosed with schizophrenia (SCHZ). This study evaluated a novel immune modulator (PD2024) that targets the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) to alleviate sensorimotor gating deficits and microglial activation employing two different rodent models of SCHZ. In Experiment 1, rats were neonatally treated with saline or the dopamine D2-like agonist quinpirole (NQ; 1 mg/kg) from postnatal day (P) 1-21 which produces increases of dopamine D2 receptor sensitivity throughout the animal's lifetime. In Experiment 2, rats were neonatally treated with saline or the immune system stimulant polyinosinic:polycytidylic acid (Poly I:C) from P5-7. Neonatal Poly I:C treatment mimics immune system activation associated with SCHZ. In both experiments, rats were raised to P30 and administered a control diet or a novel TNFα inhibitor PD2024 (10 mg/kg) in the diet from P30 until P67. At P45-46 and from P60-67, animals were behaviorally tested on auditory sensorimotor gating as measured through prepulse inhibition (PPI). NQ or Poly I:C treatment resulted in PPI deficits, and PD2024 treatment alleviated PPI deficits in both models. Results also revealed that increased hippocampal and prefrontal cortex microglial activation produced by neonatal Poly I:C was significantly reduced to control levels by PD2024. In addition, a separate group of animals neonatally treated with saline or Poly I:C from P5-7 demonstrated increased TNFα protein levels in the hippocampus but not prefrontal cortex, verifying increased TNFα in the brain produced by Poly I:C. Results from this study suggests that that brain TNFα is a viable pharmacological target to treat the neuroinflammation known to be associated with SCHZ.

Share

COinS