Title

Test-Retest Reliability of Tone- And 40 Hz Train-Evoked Gamma Oscillations in Female Rats and Their Sensitivity to Low-Dose NMDA Channel Blockade

Document Type

Article

Publication Date

8-1-2021

Description

Rationale: Schizophrenia patients consistently show deficits in sensory-evoked broadband gamma oscillations and click-evoked entrainment at 40 Hz, called the 40-Hz auditory steady-state response (ASSR). Since such evoked oscillations depend on cortical N-methyl D-aspartic acid (NMDA)-mediated network activity, they can serve as pharmacodynamic biomarkers in the preclinical and clinical development of drug candidates engaging these circuits. However, there are few test-retest reliability data in preclinical species, a prerequisite for within-subject testing paradigms. Objective: We investigated the long-term psychometric stability of these measures in a rodent model. Methods: Female rats with chronic epidural implants were used to record tone- and 40 Hz click-evoked responses at multiple time points and across six sessions, spread over 3 weeks. We assessed reliability using intraclass correlation coefficients (ICC). Separately, we used mixed-effects ANOVA to examine time and session effects. Individual subject variability was determined using the coefficient of variation (CV). Lastly, to illustrate the importance of long-term measure stability for within-subject testing design, we used low to moderate doses of an NMDA antagonist MK801 (0.025–0.15 mg/kg) to disrupt the evoked response. Results: We found that 40-Hz ASSR showed good reliability (ICC=0.60–0.75), while the reliability of tone-evoked gamma ranged from poor to good (0.33–0.67). We noted time but no session effects. Subjects showed a lower variance for ASSR over tone-evoked gamma. Both measures were dose-dependently attenuated by NMDA antagonism. Conclusion: Overall, while both evoked gamma measures use NMDA transmission, 40-Hz ASSR showed superior psychometric properties of higher ICC and lower CV, relative to tone-evoked gamma.

Share

COinS